Как граммы определить в домашних условиях

Добавлено: 14.02.2018, 19:28 / Просмотров: 43264

Общие сведения

Исключительная важность белков в функционировании человеческого организма стала ясна в начале XIX века. Учёные обозначили эти вещества греческим термином «протеины», от слова protos - «главный, первый».
 
Главная особенность этих химических соединений состоит в том, что они являются основой, которую организм использует для создания новых клеток. Другие их функции состоят в обеспечении регуляторных и обменных процессов; в выполнении транспортных функций (к примеру, белок гемоглобин, распространяющий кислород по всему организму с током крови); в формировании мышечных волокон; в управлении многими витальными функциями организма (ярким примером служит белок инсулин); в регулировании процесса пищеварения, энергетического обмена; в защите организма.

Химическая структура этих веществ определяется количеством аминокислот, из которых состоят белковые молекулы. Молекулы по размеру являются довольно крупными. Эти вещества являются высокомолекулярными органическими веществами и представляют собой цепочку аминокислот, связанных между собой пептидной связью. Аминокислотный состав протеинов обусловлен генетическим кодом. Множество вариаций соединения аминокислот дает разнообразие свойств протеиновых молекул. Как правило, они соединяются между собой и образуют сложные комплексы.
 
Классификация протеинов не доработана, поскольку учёными исследованы далеко не все белки. Роль многих из них продолжает быть загадкой для людей. Пока что протеины разделяют по биологической роли и по тому, какие именно аминокислоты входят в их состав. Для нашего питания ценен не сам белок, а составляющие его аминокислоты. Аминокислоты – это одна из разновидностей органических кислот. Их насчитывают более 100. Без них невозможно протекание метаболических процессов.
 
Организм не может полностью усваивать поступающие с пищей протеины. Большая их часть подвергается разрушению под действием кислых пищеварительных соков. Происходит распад белков до аминокислот. Организм «берёт» после распада нужные ему аминокислоты и конструирует из них нужные белки. При этом может происходить трансформация одних аминокислот в другие. Помимо трансформации, они также могут самостоятельно синтезироваться в организме.
 
Однако не все аминокислоты может производить наш организм. Те, которые не синтезируются, называются незаменимыми, потому что организм в них нуждается, а получить их может только извне. Незаменимые аминокислоты не могут быть заменены другими. К ним причисляют метионин, лизин, изолейцин, лейцин, фенилаланин, треонин, валин. К тому же есть другие аминокислоты, которые образуются исключительно из незаменимых фенилаланина и метионина. Поэтому качество питания обусловлено не количеством поступающих белков, а качественным их составом. Например, в картофеле, белокочанной капусте, свекле, капусте, в бобовых, в хлебе содержится большое количество триптофана, лизина, метионина.
 
Протекание белкового обмена в нашем организме зависит от достаточного количества нужных белков. Расщепление и трансформация одних веществ в другие происходит с выделением нужной организму энергии.
 
Как результат жизнедеятельности организма, постоянно происходит потеря части белков. Из поступающих извне белковых веществ теряется примерно 30 г в сутки. Поэтому с учётом потери, рацион должен содержать достаточное количество этих веществ, чтобы обеспечить работоспособность организма.
 
Потребление организмом белковых веществ зависит от разных факторов: выполнение трудной физической работы или нахождение в состоянии покоя; эмоциональное состояние. В сутки норма потребления белка составляет в совокупности не менее 50 грамм для взрослых людей (это примерно 0,8 грамм на каждый килограмм массы тела). Детям, в связи с интенсивным ростом и развитием, требуется больше протеинов – до 1,9 грамма на килограмм массы тела.
 
Тем не менее, даже большое количество употреблённых в пищу белковых веществ не гарантирует сбалансированное количество аминокислот в них. Поэтому рацион питания должен быть разнообразный, чтобы организм смог из него извлечь максимум пользы в виде разных аминокислот. Речь не идёт о том, что если сегодня в съеденной вами пище не оказалось триптофана, то уже завтра же вы заболеете. Нет, организм «умеет» в небольших количествах запасать полезные аминокислоты и расходовать в случае необходимости. Однако кумулятивная способность организма не слишком высока, поэтому запасы полезных веществ надо регулярно пополнять.
 
Если по личным убеждениям (вегетарианство) или по состоянию здоровья (проблемы с желудочно-кишечным трактом и диетическое питание) у вас присутствует ограничение в рационе, то вам необходимо получить консультацию врача-диетолога, чтобы скорректировать своё питание и восстановить баланс протеинов в организме.
При интенсивных спортивных занятиях организм нуждается в большом количестве протеинов. Специально для таких людей выпускается спортивное питание. Однако поступление протеинов должно соответствовать выполняемым физическим нагрузкам. Переизбыток этих веществ, вопреки расхожему мнению, вовсе не приведёт к резкому росту мышеч­ной массы.
 
Разнообразие функций протеинов охватывает едва ли не все протекающие в организме биохимические процессы. Их можно назвать биохимическими катализаторами.
Из протеинов образуется цитоскелет, который поддерживает форму клеток. Без протеинов невозможно успешное функционирование иммунной системы.
 
Отличным пищевым источником протеинов являются мясо, молоко, рыба, зерновые, бобовые, орехи. Менее богаты протеинами фрукты, ягоды и овощи.
 
Первый белок, который был изучен с целью определения его аминокислотной последовательности, это инсулин. За это достижение Ф. Сенгером была получена Нобелевская премия в 60 годах прошлого столетия. А учёные Д. Кендрю и М. Перуц в то же время смогли создать трёхмерную структуру миоглобина и гемоглобина с помощью методики дифракции рентген-лучей. За это они также были удостоены Нобелевской премии.
 

вернуться к оглавлению статьи

История изучения


Основоположником изучения протеинов является Антуан Франсуа де Фуркруа. Он выделил их в отдельный класс, после того как заметил их свойство денатурировать (или сворачиваться) под действием кислот или высокой температуры. Он исследовал фибрин (выделенный из крови), глютен (выделенный из пшеничного зерна) и альбумин (яичный белок).

 
Голландский учёный Г. Мульдер дополнил научные работы своего французского коллеги де Фуркруа и провел анализ белкового состава. На основании данного анализа он выдвинул гипотезу о том, что большая часть белковых молекул имеют похожую эмпирическую формулу. Он также первым смог определить молекулярную массу белка.
По мнению Мульдера, любой белок состоит из малых структурных составляющих – «протеинов». А в 1838 году шведский учёный Я. Берцелиус предложил термин «протеины» в качестве общего названия всех белков.
 
В последующие 30-40 лет были проведены исследования большей части аминокислот, входящих в состав протеинов. В 1894 году А. Коссель, немецкий физиолог, сделал предположение, что именно аминокислоты и являются теми самыми структурными составляющими белков, и что они соединены между собой пептидными связями. Он пытался исследовать аминокислотную последовательность белка.
В 1926 году, наконец, была признана главенствующая роль протеинов в организме. Это произошло тогда, когда химик из США Д. Самнер доказал, что уреаза (фермент, без которого невозможно протекание многих химических процессов) является белком.
 
Выделить чистые протеины для нужд науки на тот момент было крайне сложно. Именно поэтому первые опыты проводились с применением тех полипептидов, которые можно было с минимальными затратами очистить в значительном количестве – это белки крови, куриные белки, различные токсины, ферменты пищеварительного или метаболического происхождения, выделяемые после забоя крупного скота. В конце 50-х годов получилось очистить бычью панкреатическую рибонуклеазу. Именно это вещество стало для многих учёных экспериментальным объектом.
 
В современной науке исследование протеинов продолжилось на качественно новом уровне. Существует отрасль биохимии, называемая протеомикой. Теперь, благодаря протеомике, можно исследовать не только выделенные очищенные белки, но и параллельное, одновременное изменение модификации множества белков, относящихся к разным клеткам и тканям. Теперь учёные могут теоретически рассчитать структуру белка по последовательности аминокислот. Методы криоэлектронной микроскопии позволяют изучить большие и малые белковые комплексы.
 

вернуться к оглавлению статьи

Свойства протеинов

Размер протеинов может измеряться в количестве составляющих их аминокислот или в дальтонах, обозначающих их молекулярную массу. Например, белки дрожжей состоят из 450 аминокислот, а их молекулярная масса составляет 53 килодальтона. Самый крупный из известных современной науке белков, который имеет название титин, состоит из более чем 38 тысяч аминокислот и обладает молекулярной массой около 3700 килодальтонов.
Белки, которые связываются с нуклеиновыми кислотами за счёт того, что взаимодействуют с их фосфатными остатками, считаются основными белками. К ним относятся протамины и гистоны.
 
Белки различают по степени их растворимости, большинство из них хорошо растворимы в воде. Однако встречаются и исключения. Фиброин (основа паутины и шёлка) и кератин (основа волос у человека, а также шерсти у животных и перьев у птиц), являются нерастворимыми.
 
вернуться к оглавлению статьи

Денатурация

Как правило, протеины сохраняют физико-химические свойства и структуру живого организма, к которому они относятся. Следовательно, если организм приспособлен к определённой температуре, то и белок её выдержит и не изменит своих свойств.
Изменение таких условий как окружающая температура, или попадание в кислотную/щелочную среду, приводит к тому, что протеин теряет вторичную, третичную и четвертичную структуры. Потеря нативной структуры, присущей живой клетке, называется денатурацией или сворачиванием белка. Денатурация может быть частичной или полной, необратимой или обратимой. Самый популярный и бытовой пример необратимой денатурации – это приготовление куриного яйца вкрутую. Под действием высокой температуры, овальбумин, прозрачный протеин, становится непрозрачным и плотным.
 
В некоторых случаях денатурация является обратимой, обратное состояние белку можно вернуть при помощи солей аммония. Обратимую денатурацию применяют как метод очистки белка.
 
вернуться к оглавлению статьи

Простые и сложные протеины

Помимо пептидных цепей, в состав некоторых белков входят и неаминокислотные структурные единицы. По критерию наличия или отсутствия неаминокислотных фрагментов, протеины делят на две группы: сложные и простые белки. Простые протеины состоят только из аминокислотных цепей. Сложные протеины содержат фрагменты, имеющие небелковую природу.
 
По химической природе сложных белков выделяют пять классов:
  • Гликопротеиды.
  • Хромопротеиды.
  • Фосфопротеиды.
  • Металлопротеиды.
  • Липопротеиды.
 
Гликопротеиды содержат в себе ковалентно связанные между собой углеводные остатки и их разновидность – протеогликаны. К гликопротеидам относятся, например, иммуноглобулины.
 
Хромопротеиды – это общее наименование сложных протеинов, к которым относятся флавопротеиды, хлорофиллы, гемоглобин, и другие.
 
Белки, называемые фосфопротеидами, содержат в своём составе остатки фосфорной кислоты. К этой группе протеинов относится, например, казеин молока.
 
Металлопротеиды – это протеины, которые содержат ковалентно связанные ионы некоторых металлов. Среди них есть протеины, которые выполняют транспортные и депонирующие функции (трансферрин, ферритин).
 
Сложные белки липопротеиды содержат в своём составе остатки липидов. Их функция - транспортировка липидов.
 
вернуться к оглавлению статьи

Биосинтез протеинов

Живые организмы создают белки из аминокислот на основе генетической информации, которая закодирована в генах. Каждый из синтезируемых белков состоит из совершенно уникальной последовательности соединённых аминокислот. Уникальная последовательность определяется таким фактором как нуклеотидная последовательность гена, кодирующая информацию о данном белке.
 
Генетический код состоит из кодонов. Кодоном называют единицу генетической информации, состоящей из остатков нуклеотидов. Каждый из кодонов отвечает за подсоединение одной аминокислоты к белку. Общее их количество – 64. Некоторые аминокислоты определяются не одним, а несколькими кодонами.
 
вернуться к оглавлению статьи

Функции протеинов в организме

Наравне с другими биологическими макромолекулами (полисахаридами и липидами) протеины нужны организму для осуществления большинства жизненных процессов в клетках. Протеины осуществляют метаболические процессы и энергетические трансформации. Они входят в состав органелл – клеточных структур, участвуют в синтезе межклеточного вещества.
 
Следует заметить, что классификация протеинов по их функциям является достаточно условной, потому что у некоторых живых организмов один и тот же протеин может выполнять несколько разных функций. Многие функции протеины выполняют благодаря тому, что обладают высокой ферментативной активностью. В частности, к таким ферментам относится двигательный белок миозин, а также регуляторные белки протеинкиназы.
 
вернуться к оглавлению статьи

Каталитическая функция

Наиболее изученная роль протеинов в организме – это катализ разных химических реакций. Ферментами называют группу протеинов, обладающую специфическими каталитическими свойствами. Каждый из таких ферментов является катализатором одной или нескольких сходных реакций. Науке известно несколько тысяч ферментативных веществ. Например, вещество пепсин, расщепляющее в процессе пищеварения белки, является ферментом.
 
Более 4 000 реакций, протекающих в нашем организме, нуждаются в катализации. Без воздействия ферментов реакция протекает в десятки и сотни раз медленнее.
Молекулы, присоединяющиеся к ферменту в процессе реакции, и затем видоизменяющиеся, называются субстратами. В составе фермента множество аминокислот, но далеко не все из них взаимодействуют с субстратом, и уж тем более не все из них напрямую участвуют процессе катализации. Та часть фермента, к которой присоединяется субстрат, считается активным ферментативным центром.
 
вернуться к оглавлению статьи

Структурная функция

Структурные протеины цитоскелета являются своего рода жёсткой основой, придающей форму клеткам. Благодаря ним может изменяться форма клеток. К ним можно отнести эластин, коллаген, кератин. Основными компонентами межклеточного вещества в соединительной ткани является коллаген и эластин. Кератин является основой для образования волос и ногтей, а также перьев у птиц.
 
вернуться к оглавлению статьи

Защитная функция

Выделяют несколько защитных функций протеинов: физическая, иммунная, химическая.
В формировании физической защиты принимает участие коллаген. Он образует базис межклеточного вещества таких разновидностей соединительной ткани как кости, хрящи, сухожилия и глубокие слои кожи (дерма). Примерами данной группы протеинов служат тромбины и фибриногены, принимающие участие в свёртывании крови.
 
Иммунная защита предполагает участие протеинов, входящих в состав крови или других биологических жидкостей, в формировании защитного ответа организма на атаку патогенных микроорганизмов или на повреждение. Например, иммуноглобулины нейтрализуют вирусы, бактерии, или чужеродные протеины. Антитела, вырабатывающиеся иммунной системой, прикрепляются к чужеродным для этого организма веществам, которые называются антигенами, и нейтрализуют их. Как правило, антитела секретируются в межклеточное пространство или закрепляются в мембранах специализированных клеток плазмоцитов.
 
Ферменты и субстрат соединяются между собой не слишком тесно, в противном случае протекание катализируемой реакции может нарушиться. А вот стойкость присоединения антигена и антител ничем не ограничивается.
 
Химическая защита состоит в связывании белковыми молекулами различных токсинов, то есть в обеспечении детоксикации организма. Самую ответственную роль в детоксикации нашего организма играют печёночные ферменты, которые расщепляют яды или переводят их в растворимую форму. Растворённые токсины быстро покидают организм.
 
вернуться к оглавлению статьи

Регуляторная функция

Большая часть внутриклеточных процессов регулируется белковыми молекулами. Эти молекулы выполняют узкоспециализированную функцию, и не являются ни строительным клеточным материалом, ни источником энергии. Регуляция осуществляется за счёт активности ферментов или за счёт связывания с другими молекулами.
Важную роль в регуляции процессов внутри клеток играют протеинкиназы. Это ферменты, влияющие на активность других протеинов с помощью присоединения к ним фосфатных частиц. Они либо усиливают активность, либо полностью подавляют её.
 
вернуться к оглавлению статьи

Сигнальная функция

Сигнальная функция белков выражается в их способности служить сигнальными веществами. Они передают сигналы между тканями, клетками, органами. Иногда сигнальную функцию считают похожей на регуляторную, поскольку многие регуляторные внутриклеточные протеины также осуществляют передачу сигналов. Клетки взаимодействуют между собой с помощью сигнальных белков, которые распространяются через межклеточное вещество.
 
Цитокины, белки-гормоны выполняют сигнальную функцию.
Гормоны разносятся кровью. Рецептор при связывании с гормоном запускает в клетке ответную реакцию. Благодаря гормонам осуществляется регуляция концентрации веществ в клетках крови, а также регуляция клеточного роста и размножения. Примером таких протеинов служит широко известный инсулин, который регулирует концентрацию в крови глюкозы.
 
Цитокины являются небольшими пептидными информационными молекулами. Они действуют как регуляторы взаимодействия между различными клетками, а также определяют выживаемость этих клеток, подавляют, или стимулируют их рост и функциональную активность. Без цитокинов невозможна согласованная работа нервной, эндокринной и иммунной систем. Например, цитокины могут вызвать некроз опухоли – то есть подавление роста и жизнедеятельности воспалительных клеток.
 
вернуться к оглавлению статьи

Транспортная функция

Растворимые белки, которые принимают участие в транспортировке малых молекул, должны легко соединяться с субстратом, если он присутствует в большой концентрации, и также легко должны его высвобождать там, где он находится в низкой концентрации. Примером транспортных протеинов является гемоглобин. Он транспортирует из лёгких кислород и приносит его к остальным тканям, а также обратно переносит от тканей к лёгким углекислый газ. Во всех царствах живых организмов были найдены белки, аналогичные гемоглобину.
 
вернуться к оглавлению статьи

Запасная (или резервная) функция

К таким протеинам относят казеин, овальбумин и другие. Эти резервные протеины в яйцеклетках животных и в семенах растений запасаются в качестве источника энергии. Они выполняют питательные функции. Много протеинов используется в нашем организме в качестве источника аминокислот.
 
вернуться к оглавлению статьи

Рецепторная функция белков

Белковые рецепторы могут располагаться как в клеточной мембране, так и в цитоплазме. Одна часть белковой молекулы принимает сигнал (любой природы: химической, световой, термической, механической). Белок-рецептор под влиянием сигнала претерпевает конформационные изменения. Эти изменения влияют на другую часть молекулы, которая ответственна за передачу сигнала на остальные клеточные компоненты. Механизмы сигнальной передачи разнятся друг с другом.
 
вернуться к оглавлению статьи

Моторная (или двигательная) функция

Моторные белки ответственны за обеспечение движения и сокращения мышц (на уровне организма) и за движение жгутиков и ресничек, внутриклеточный транспорт веществ, амебоидное движение лейкоцитов (на клеточном уровне).
 
вернуться к оглавлению статьи

Белки в обмене веществ

Большая часть растений и микроорганизмов в состоянии синтезировать 20 основных, а также некоторое количество дополнительных аминокислот. Но если они есть в окружающей среде, то организм предпочтёт сберечь энергию и транспортировать их внутрь, а не синтезировать.
 
Те аминокислоты, которые не синтезируются организмом, называются незаменимыми, следственно, могут поступать к нам только извне.
 
Человек получает аминокислоты из тех белков, которые содержатся в пище. Белки подвергаются денатурации в процессе пищеварения под действием кислых желудочных соков и ферментов. Некоторая часть полученных в результате пищеварительного процесса аминокислот применяется для синтеза нужных протеинов, а остальная их часть в процессе глюконеогенеза превращается в глюкозу или применяется в цикле Кребса (это процесс метаболического распада).
 
Использование протеинов в качестве энергетического источника особенно важно в неблагоприятных условиях, когда организм использует внутренний «неприкосновенный запас» – собственные белки. Аминокислоты для организма являются также важным источником азота.
 
Единых норм суточной потребности в белках нет. Микрофлора, населяющая толстый кишечник, также синтезирует аминокислоты, и они не могут учитываться при составлении протеиновых норм.
 
Запасы протеинов в человеческом организме минимальны, а новые протеины могут синтезироваться только из распадающихся белков, поступающих от тканей организма и из аминокислот, поступающих вместе пищей. Из тех веществ, которые входят в состав жиров и углеводов, протеины не синтезируются.

Недостаток белка
Недостаток белковых веществ в рационе вызывает у детей сильное замедление роста и развития. Для взрослых белковый дефицит опасен появлением глубоких изменений в печени, изменением гормонального фона, нарушением функционирования желёз внутренней секреции, ухудшением усвояемости питательных веществ, ухудшением памяти и работоспособности, проблемами с сердцем. Все эти негативные явления связаны с тем, что протеины участвуют почти во всех процессах человеческого организма.

В 70 годах прошлого века были зафиксированы летальные случаи у людей, долгое время соблюдающих низкокалорийную диету с выраженным дефицитом белка. Как правило, непосредственной причиной смерти в данном случае являлись необратимые изменения в сердечной мышце.
 
Дефицит протеинов снижает устойчивость иммунитета к инфекциям, поскольку уменьшается уровень образования антител. Нарушение синтеза интерферона и лизоцима (защитных факторов) вызывает обострение воспалительных процессов. Кроме того, белковый дефицит зачастую сопровождается недостатком витаминов, что в свою очередь тоже приводит к неблагоприятным последствиям.
 
Дефицит влияет не лучшим образом на выработку ферментов и на усвояемость важных питательных веществ. Не следует забывать, что гормоны являются белковыми образованиями, следовательно, недостаток протеинов может привести к сильным гормональным нарушениям.
 
Любая активность физического характера наносит вред мышечным клеткам, и чем нагрузка больше, тем больше мышцы страдают. Для восстановления повреждённых клеток мышц необходимо большое количество качественного белка. Вопреки распространённому мнению, физические нагрузки только тогда полезны, когда с пищей в организм поставляется достаточное количество белка. При интенсивных физических нагрузках потребление белка должно достигать 1,5 - 2 грамма на каждый килограмм веса.
 

вернуться к оглавлению статьи

Избыток белка

Для поддержания азотистого баланса в организме нужно определённое количество протеинов. Если в рационе белка немного больше, то это не повредит здоровью. Избыточное количество аминокислот в этом случае используется просто как дополнительный источник энергии.
 
Но если человек не занимается спортом, и при этом употребляет более чем 1,75 грамм белка на килограмм веса, то в печени накапливается избыток протеина, который превращается в азотистые соединения и глюкозу. Азотистое соединение (мочевина) должно в обязательном порядке выводиться почками из организма.

Кроме того, при переизбытке белка возникает кислая реакция организма, что приводит к потере кальция из-за изменения питьевого режима. К тому же мясная пища, богатая белком, зачастую содержит пурины, некоторые из которых в процессе метаболизма откладываются в суставах и вызывают развитие подагры. Следует отметить, что нарушения, связанные с переизбытком протеином, встречаются намного реже, чем нарушения, связанные с белковой недостаточностью.
 
Оценка достаточного количества белка в рационе осуществляется по состоянию азотистого баланса. В организме беспрестанно происходит синтезирование новых протеинов и выделение наружу конечных продуктов белкового метаболизма. В состав протеинов входит азот, не содержащийся ни в жирах, ни в углеводах. И если азот откладывается в организме про запас, то исключительно в составе белков. При белковом распаде он должен выделиться наружу вместе с мочой. Для того чтобы функционирование организма осуществлялось на нужном уровне, требуется восполнить удаляемый азот. Азотистый баланс означает, что количество потребляемого азота соответствует количеству выведенного из организма.
 

вернуться к оглавлению статьи

Белковое питание


Польза пищевых протеинов оценивается по коэффициенту белковой усвояемости. Данный коэффициент учитывает химическую ценность (состав аминокислот), и биологическую ценность (процент переваривания протеинов). Полноценными источниками протеинов считаются те продукты, которые имеют коэффициент усвояемости равный 1,00.

Коэффициент усвояемости равен 1,00 в следующих продуктах: яйца, соевый белок, молоко. Говядина показывает коэффициент 0,92.
 
Эти продукты являются высококачественным источником протеинов, однако нужно помнить, что они содержат много жира, поэтому злоупотреблять их частотой в рационе нежелательно. Помимо большого количества белка, в организм также попадёт излишнее количество жира.

Предпочтительные продукты с богатым протеиновым содержанием: соевые сыры, нежирные сыры, нежирная телятина, яичный белок, обезжиренный творог, свежая рыба и морепродукты, молодой барашек, курятина, белое мясо.
Менее предпочтительно употребление таких продуктов, как: молоко и йогурты с добавлением сахара, красное мясо (вырезка), темное куриное и индюшачье мясо, нежирная нарезка, домашний творог, переработанное мясо в виде бекона, салями, ветчины.

Яичный белок – это чистый белок, в котором нет жира. В постном мясе содержится около 50 % килокалорий, приходящихся на долю протеинов; в продуктах, содержащих крахмал – 15%; в обезжиренном молоке – 40 %; в овощах – 30 %.
 
Главное правило при выборе белкового питания состоит в следующем: большее количество белка на единицу калорий и высокий коэффициент усвояемости белка. Полезнее всего употреблять продукты с низким содержанием жира и высоким содержанием белков. Данные о калорийности можно найти на упаковке любого продукта. Обобщённые данные о содержании белков и жиров в тех продуктах, калораж которых сложно высчитать, можно найти в специальных таблицах.
 
Легче усваиваются протеины, подвергнувшиеся тепловой обработке, поскольку они становятся легкодоступными для воздействия ферментов пищеварительного тракта. Однако температурная обработка может снизить биологическую ценность протеина из-за того, что разрушаются некоторые аминокислоты.

 Содержание белков и жиров в некоторых пищевых продуктах

Продукты Белки, граммы Жиры, граммы Курятина 20,8 8,9 Сердце 15 3 Свинина нежирная 16,3 27,8 Говядина 18,9 12,3 Телятина 19,7 1,2 Докторская варёная колбаса 13,7 22,9 Диетическая варёная колбаса 12,2 13,5 Минтай 15,8 0,7 Сельдь 17,7 19,6 Икра осетровая зернистая 28,6 9,8 Хлеб пшеничный из муки I сорта 7,6 2,3 Хлеб ржаной 4,5 0,8 Сдобная выпечка 7,2 4,3 Очень полезно употреблять соевые продукты: сыр тофу, молоко, мясо. Соя содержит абсолютно все нужные аминокислоты в таком соотношении, какое нужно для удовлетворения потребностей организма. К тому же она отлично усваивается.
Казеин, который содержится в молоке, также является полным протеином. Коэффициент усвояемости у него равен 1,00. Сочетание выделенного из молока казеина и сои даёт возможность создавать полезные продукты питания с высоким белковым содержанием, при этом они не содержат лактозу, что разрешает употребление их лицами, страдающими непереносимостью лактозы. Еще один плюс таких продуктов состоит в том, что в них нет сыворотки, которая является потенциальным источником аллергенов.
 
вернуться к оглавлению статьи

Метаболизм протеинов


Чтобы усвоить белок, организму нужно много энергии. Первым делом организм должен расщепить аминокислотную цепочку белка на несколько коротких цепочек, или же на сами аминокислоты. Этот процесс достаточно длительный и требующий разных ферментов, которые организм должен создать и транспортировать в пищеварительный тракт. Остаточные продукты белкового обмена – азотистые соединения – должны быть выведены из организма.

 
Все эти действия в сумме потребляют немалое количество энергии для усвоения белковой пищи. Поэтому белковая пища стимулирует ускорение метаболизма и увеличение энергетических затрат на внутренние процессы.

На усвоение еды организм может потратить около 15% от всей калорийности рациона.
Пища с высоким содержанием протеинов, в процессе метаболизма способствует усилению теплопродукции. Температура тела немного увеличивается, что приводит к дополнительному расходу энергии на процесс термогенеза.

Белки не всегда используются в качестве энергетической субстанции. Это связано с тем, что применение их в качестве источника энергии для организма бывает невыгодным, ведь из определённого количества жиров и углеводов можно получить гораздо больше калорий и намного эффективнее, чем из аналогичного количества протеина. К тому же в организме редко бывает переизбыток белков, а если он и есть, то большая часть избыточных протеинов идёт для осуществления пластических функций.
 
В том случае, когда в питании не достаёт энергетических источников в виде жиров и углеводов, организм принимается за использование накопленных жиров.
 
Достаточное количество протеинов в рационе помогает активизировать и нормализовать замедленный обмен веществ у тех людей, которые страдают ожирением, а также позволяет поддерживать мышечную массу.
 
Если белка не хватает, организм переключается на использование мышечных белков. Это происходит потому, что мышцы не так важны для поддержания жизнедеятельности организма. В мышечных волокнах сгорает большая часть калорий, и снижение мышечной массы понижает энергетические затраты организма.
 
Очень часто люди, придерживающиеся различных диет для похудения, выбирают такую диету, в которой очень мало белка поступает с пищей в организм. Как правило, это овощные или фруктовые диеты. Кроме вреда, такая диета ничего не принесёт. Функционирование органов и систем при недостатке протеинов угнетается, что вызывает различные нарушения и заболевания. Каждую диету надо рассматривать с точки зрения потребности организма в белке.
 
Такие процессы как усвоение белков и применение их в энергетических потребностях, а также выведение продуктов белкового метаболизма, требует больше жидкости. Чтобы не получить обезвоживание, в день надо принимать около 2 литров воды.

вернуться к оглавлению статьи
Источник: http://www.herbalist.ru/nutrit5.html



Рекомендуем посмотреть ещё:


Закрыть ... [X]

Как накачать бразильскую попу быстро? Упражнения в


Как граммы определить в домашних условиях Как граммы определить в домашних условиях Как граммы определить в домашних условиях Как граммы определить в домашних условиях Как граммы определить в домашних условиях Как граммы определить в домашних условиях Как граммы определить в домашних условиях